
Copyright is held by the author / owner(s). 
SIGGRAPH 2012, Los Angeles, California, August 5 – 9, 2012. 
ISBN 978-1-4503-1435-0/12/0008 

3D Diff: An Interactive Approach to Mesh Differencing and Conflict Resolution

Jozef Doboš∗, Anthony Steed
University College London

Figure 1: 3-way 3D diff: Two revisions (left and right) of the same model are compared against their common ancestor and each other
to suggest automatic conflict resolution (in blue). Conflicts are in red, non-conflicting modifications in blue, user selection in orange and
manually merged results in gray. Our user interface facilitates the 2- and 3-way 3D diff. Model attribution: Blender Foundation.

1 Introduction

We introduce 3D diff, a novel approach to interactively resolve con-
flicting mesh edits. Our method performs conflict detection and
visualization and allows the user to quickly select one of the two re-
visions for each conflicted scene graph (SG) node. By further inte-
grating the knowledge about a common ancestor of the two models,
a.k.a. 3-way diff [Mens 2002], we are able to automatically resolve
more conflicts than in a standard 2-way comparison. Our method is
particularly useful for revision management of 3D models.

In general, comparing and merging two models is a complex and
time consuming task especially when concurrent edits by multiple
people are to be integrated. When combining modified versions of
the same 3D scene, popular modelling packages such as Autodesk
3ds Max, Maya or Blendersuperimpose the meshes but do not aid
the merging process any further. Despite the advantages of vertex-
level editing, most of the time it would be satisfactory to simply
preserve whole sections from the individual model versions to form
a combined result.

In their recent revision control system for images, Chen et al. [2011]
implemented a visual diff as a playback of recorded image edits.
State of the art side-by-side 3D model comparison is offered by
Provenance Explorer for Maya1 which, similarly, relies on stored
edit sequences. In contrast, our prototype works independently
from editing software like many line-based differencing tools for
source code management [Mens 2002]. Closest to our approach is
the abandoned Art Diff for Subversion project2 that loads 3D files
for a basic visual comparison but does not detect conflicts nor does
it support merging.

2 Our Approach

During the modelling stage, we assign each SG node a universally
unique identifier (UUID) so that the same parts of a model can eas-

∗e-mail: j.dobos@cs.ucl.ac.uk

1http://vistrails.com/maya.html
2http://code.google.com/p/artdiff/

ily be matched when comparing models’ different revisions. To
ensure that our solution is independent from the modelling soft-
ware, we decompose most common 3D file formats into their SG
components via the Open Asset Import Library (Assimp3).

Our stand-alone model viewer performs an early reject byte-by-byte
comparison of SG nodes from various revisions that share the same
UUID. When there are discrepancies in the two models, they are
treated as conflicting edits (red in Fig. 1). However, in a 3-way
comparison, we add extra information about the common ancestor
of the differenced models. If one of the versions is the same as the
original, i.e. no changes have been made, the other must be the in-
tended modification to be automatically preserved during the merge
process (blue). Nevertheless, the user has to confirm all changes in-
cluding modifications as these could visually interfere with other
parts of the model. To perform a fast merge, the user can select a
version for each conflicted SG node in a color-coded conflicts list
and inspect the proposed combined result visually.

3 Evaluation and Conclusions

Based on the initial evaluation of our prototype, we believe that
such approach to mesh differencing and merging can significantly
speed up the revision control management of 3D models. What is
more, this technique allows for comparison of otherwise incompat-
ible 3D file formats. Integration into modelling packages via their
plug-in frameworks is also possible. In the near future, we plan to
make this work open source and will investigate automated camera
navigation for better context understanding, bounding box intersec-
tion detection and vertex-level merging.

References

CHEN, H.-T., WEI, L.-Y., AND CHANG, C.-F. 2011. Nonlinear
revision control for images. ACM Trans. Graph. 30, 4 (Aug.),
105:1–105:10.

MENS, T. 2002. A state-of-the-art survey on software merging.
IEEE Transactions on Software Engineering 28, 5, 449–462.

3http://assimp.sourceforge.net

http://vistrails.com/maya.html
http://code.google.com/p/artdiff/
http://assimp.sourceforge.net

